C14	0 4706 (2)	0.6325 (6)	0 3230 (3)	52 (3)
C10	0.4700 (2)	0.0525(0)	0.3250(5)	5.4 (5)
CI/	0.4246 (2)	0.7511 (5)	0.2331(3)	3.4 (3)
C18	0.3678 (2)	0.7284 (5)	0.1452 (3)	4.6 (3)
C19	0.3565 (2)	0.5841 (5)	0.1037 (2)	3.7 (3)
C20	0.4027 (2)	0.4565 (5)	0.1736 (2)	3.6 (3)
C21	0.1607 (2)	0.2598 (5)	0.3420 (3)	4.1 (2)
N22	0.2080 (2)	0.3913 (4)	0.3702 (2)	4.5 (2)
C23	0.1619 (3)	0.5328 (5)	0.3243 (4)	5.7 (5)
C24	0.0981 (3)	0.5191 (5)	0.2050 (4)	6.2 (5)
C25	0.0512 (2)	0.3746 (5)	0.1732 (3)	5.5 (4)
N26	0.0998 (2)	0.2346 (4)	0.2271 (2)	3.9 (2)
C27	0.0502 (2)	0.1036 (5)	0.1991 (3)	4.6 (3)
C28	0.0961 (2)	-0.0417 (5)	0.2602 (3)	4.7 (3)
C29	0.1583 (2)	-0.0050 (5)	0.3780 (3)	5.2 (4)
N30	0.2072 (2)	0.1226 (4)	0.3992 (2)	4.3 (3)
C31	0.2624 (2)	0.0902 (5)	0.4006 (2)	4.0 (2)
C32	0.2943 (2)	-0.0545 (5)	0.4226 (3)	5.4 (3)
C33	0.3512 (2)	-0.0775 (6)	0.4260 (3)	6.5 (5)
C34	0.3754 (2)	0.0373 (6)	0.4058 (3)	6.1 (5)
C35	0.3447 (2)	0.1887 (5)	0.3834 (3)	4.9 (3)
C36	0.3686 (2)	0.3145 (7)	0.3625 (3)	5.9 (4)
C37	0.3395 (2)	0.4580 (6)	0.3444 (3)	6.0 (5)
C38	0.2848 (2)	0.4879 (5)	0.3444 (3)	5.2 (4)
C39	0.2594 (2)	0.3680 (5)	0.3632 (2)	4.1 (2)
C40	0.2881 (2)	0.2165 (5)	0.3814 (2)	4.0 (2)

Table 2. Selected geometric parameters (Å, °)

N2C1	1.450 (5)	N22-C21	1.438 (4)
N2C3	1.473 (6)	N22-C23	1.453 (5)
N2C19	1.395 (4)	N22C39	1.405 (4)
N6-C1	1.471 (4)	N26-C21	1.465 (4)
N6C5	1.475 (6)	N26-C25	1.471 (4)
N6-C7	1.471 (4)	N26-C27	1.468 (6)
N10-C1	1.434 (4)	N30-C21	1.444 (4
N10C9	1.459 (5)	N30-C29	1.474 (4)
N10	1.410 (4)	N30-C31	1.402 (4
C1-N2-C3	109.9 (2)	C21-N22-C23	110.0 (3)
C1-N2-C19	116.9 (2)	C21-N22-C39	115.6 (3)
C3-N2-C19	119.0 (3)	C23-N22-C39	118.1 (3)
C1-N6-C5	110.4 (2)	C21-N26-C25	109.7 (3
C1N6C7	110.1 (2)	C21-N26-C27	110.5 (2
C5-N6-C7	107.9 (2)	C25—N26—C27	108.3 (2
C1-N10C9	110.3 (2)	C21-N30-C29	109.7 (2
C1-N10-C11	115.9 (3)	C21-N30-C31	116.3 (3
C9-N10-C11	117.9 (3)	C29-N30-C31	119.0 (3

The structure was determined by direct methods using *MUL-TAN80* (Main *et al.*, 1980) and contains two independent molecules. H atoms were found by difference Fourier then recalculated in steric positions. The H atoms were placed in calculated positions (C—H = 0.98 Å) at the beginning of each least-squares cycle, with a *B* value of 4.8 Å², and not refined. Dispersion corrections were taken from Cromer (1974).

Data collection: CAD-4 diffractometer software. Cell refinement: CAD-4 diffractometer software. Data reduction: local program. Structure solution: *MULTAN*80. Structure refinement: local program. Molecular graphics: *ORTEP*II (Johnson, 1976). Preparation of material for publication: local program.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HA1136). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beddoes, R. L., Edwards, W. D., Joule, J. A., Mills, O. S. & Street, J. D. (1987) *Tetrahedron*, **43**, 1903–1920.
- Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV. Birmingham: Kynoch Press (Present distributor: Kluwer Academic Publishers, Dordrecht).

- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A. Birmingham; Kynoch Press. (Present distributor: Kluwer Academic Publishers, Dordrecht).
- Erhardt, J. M. & Wuest, J. D. (1980). J. Am. Chem. Soc. 102, 6363-6364.
- Gleiter, R. & Uschmann, J. (1986). J. Org. Chem. 51, 370-380.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P., & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Seiler, P., Weisman, G. R., Glendening, E. D., Weinhold, F., Johnson, V. B. & Dunitz, J. D. (1987). Angew. Chem. Int. Ed. Engl. 26, 1175-1177.

Acta Cryst. (1995). C51, 1347-1350

6-(3,5-Di-*O*-acetyl- β -D-2-deoxyribofuranosyl)-3,4-dihydro-8*H*-pyrimido[4,5-*c*][1,2]oxazin-7(6*H*)-one

LUC VAN MEERVELT

Laboratorium voor Macromoleculaire Structuurchemie, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

PAUL KONG THOO LIN

School of Applied Sciences, The Robert Gordon University, St Andrew Street, Aberdeen AB1 1HG, Scotland

DANIEL M. BROWN

Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge CB2 2QH, England

(Received 29 September 1994; accepted 3 January 1995)

Abstract

The title compound, $C_{15}H_{19}N_3O_7$ (P), crystallizes with two molecules in the asymmetric unit which differ in sugar and oxazino ring puckering; both occur as the imino tautomer and form P:P wobble base pairs.

Comment

The preferred syn conformation of the methoxyl group, with respect to N3, in the base analogue N⁴methoxycytosine M (Van Meervelt, 1991) destabilizes Watson-Crick M:A and M:G base pairs in oligonucleotide duplexes. In the left-handed double helical fragment d(CGCGMG)₂, wobble base pairing is found for the M:G base pairs with M in the imino form (Van Meervelt, Moore, Kong Thoo Lin, Brown & Kennard, 1990).

The related title compound, P, in which the N— O bond is *anti*, is also ambivalent in its hydrogenbonding potential. In an NMR study the G:P pair showed slow chemical exchange between Watson–Crick (P in amino form) and wobble (P in imino form) conformations (Nedderman, Stone, Williams, Kong Thoo Lin & Brown, 1993). This crystal structure analysis of the 3',5'-diacetyl derivative of the P deoxynucleoside was undertaken to determine in which tautomer (imino– amino) the nucleoside analogue occurs in the solid state.

The compound crystallizes from ethanol in the monoclinic space group $P2_1$ and the asymmetric unit contains two independent molecules (A and B). The observed disorder in the oxazino moiety of molecule B was refined by assuming two alternative positions for atoms O4 and C7 (O4B1 and O4B2, and C7B1 and C7B2, in Table 1). The molecular structure of molecule B with labelling is depicted in Fig. 1.

The modified base points away from the sugar (*anti* orientation) as reflected by the glycosidic torsion angle χ [-113.3 (3) for A, -120.9 (4)° for B] which is in the usual range for pyrimidine nucleosides (Saenger, 1984). The pseudorotation phase angle of residue A [165 (1)°] is typical of a C2'-endo conformation; for residue B a symmetrical C2'-endo-C1'-exo conformation [143 (1)°] is found.

Within the two independent molecules, the C=N distances of 1.279 (5) and 1.288 (5) Å are close to the mean C=N bond length of 1.281 (13) Å in $(C,H)_2$ -C=N-OH oximes (Allen *et al.*, 1987) and the C=N distance of 1.315 (8) Å in M (Van Meervelt, 1991). As a consequence the P base analogue is in the imino tautomeric form.

According to the Cremer & Pople (1975) treatment, the oxazino rings can be described by a puckering amplitude Q, a phase angle φ and a polar position θ . For residue A these values [0.455 (4) Å, 179.2 (1)°, 50.2 (1)°] are close to those of a half-boat conformation. For residue B a twist-boat conformation [0.165 (6) Å, 287.2 (1)°, 119.4 (1)° for conformation (1)] and halfboat conformation [0.424 (6) Å, 25.2 (1)°, 120.1 (1)° for conformation (2)] are found. For both half-boat conformations, C7 is at the top of the envelope. The orientation about the C4'---C5' bond, described by γ , is +synclinal (Klyne & Prelog, 1960) [$\gamma = 58.8$ (4) for A and 50.1 (5)° for B].

The two molecules in the asymmetric unit form a P:P wobble base pair (Fig. 2) which differs from the standard Watson-Crick base pair by the loss of the twofold symmetry between the glycosyl C1'-N bonds. The corresponding bond lengths and angles are N3A—H3A 0.90, H3A···O2B 2.040(5), N3A··· O2B2.872 (5) Å, $N3A - H3A \cdot \cdot \cdot O2B$ 153.1 (1)°: N4A···H3B 2.042 (5), H3B-N3B 0.90, N4A···· N3B 2.925 (5) Å, N4A····H3B—N3B 166.7 (1)°. The dihedral angle between the individual pyrimidine base planes (omitting O4, C7 and C8), known as propeller twist, is +15.9(2)°. The usual propeller twists in Aand B-DNA are negative (see Dickerson et al., 1989, for conventions).

The observed disorder in one of the oxazino rings can be related to the short intermolecular contacts $C7B1\cdots O4B1$ [3.09(1)Å] and $C7B2\cdots O4B2$ [2.90(1)Å] found for molecule B.

Fig. 1. Structure of molecule *B* with labelling (omitting the '*B*' identifiers of Table 1) showing 50% probability displacement ellipsoids (*SHELXTL-PC*; Sheldrick, 1990).

Fig. 2. P:P wobble base-pair formation between two independent molecules in the asymmetric unit (*SHELXTL-PC*; Sheldrick, 1990).

	VAN MEERVELT, KONG	g thoo i	IN AND B	ROWN		1349
Experimental Crystal data $C_{15}H_{19}N_3O_7$ $M_r = 353.33$	Cu $K\alpha$ radiation $\lambda = 1.54184$ Å	031A C32A C5'A O5'A C51A 0514	0.2902 (2) 0.4304 (3) 0.1448 (2) 0.1526 (2) 0.0985 (3) 0.0441 (2)	-0.3066 (8) -0.1031 (11) -0.2115 (9) -0.3579 (6) -0.5528 (8) -0.6203 (8)	-0.07063 (14) -0.0809 (2) 0.0507 (2) 0.10736 (11) 0.1089 (2) 0.06143 (15)	0.118 (2) 0.096 (2) 0.054 (2) 0.0570 (11) 0.075 (2)
Monoclinic $P2_1$ a = 14.662 (3) Å b = 5.4190 (10) Å c = 21.475 (4) Å $\beta = 101.66$ (3)° V = 1671.1 (6) Å ³ Z = 4 $D_x = 1.404$ Mg m ⁻³	Cell parameters from 20 reflections $\theta = 11-21^{\circ}$ $\mu = 0.959 \text{ mm}^{-1}$ T = 289 (2) K Needle $0.3 \times 0.05 \times 0.05 \text{ mm}$ White	C52A N1B C2B N3B C4B C5B C6B O2B N4B O4B1† C7B1† O4B2†	0.1073 (3) 0.3325 (2) 0.4031 (3) 0.4544 (2) 0.4461 (2) 0.3747 (3) 0.3247 (3) 0.4096 (2) 0.5045 (2) 0.5112 (3) 0.4432 (4) 0.4820 (4)	-0.6646 (10) 0.5674 (8) 0.4251 (10) 0.2902 (8) 0.3013 (10) 0.4689 (9) 0.5899 (9) 0.4041 (7) 0.1606 (7) 0.2192 (13) 0.3381 (18) 0.1351 (14)	0.06143 (13) 0.1706 (2) 0.71771 (13) 0.7541 (2) 0.6540 (2) 0.6503 (2) 0.6519 (2) 0.81080 (11) 0.63359 (12) 0.5681 (2) 0.5282 (3) 0.5282 (3)	0.115 (2) 0.075 (2) 0.0561 (13) 0.062 (2) 0.0590 (14) 0.058 (2) 0.060 (2) 0.057 (2) 0.0613 (12) 0.0582 (14) 0.063 (2) 0.080 (3) 0.077 (2)
Data collection Siemens P4PC diffractom- eter θ -2 θ scans Absorption correction: none 2121 measured reflections 2121 independent reflections 1256 observed reflections $[I > 2\sigma(I)]$	$\theta_{max} = 47.22^{\circ}$ $h = -13 \rightarrow 13$ $k = -1 \rightarrow 5$ $l = 0 \rightarrow 20$ 3 standard reflections monitored every 100 reflections intensity decay: none	C7B2† C8B C1'B C2'B C3'B C4'B O4'B O3'B C31B O31B C32B C5'B O5'B	0.4052 (5) 0.3749 (3) 0.2676 (3) 0.2578 (2) 0.1582 (2) 0.1056 (2) 0.1056 (2) 0.1056 (2) 0.0895 (3) 0.0256 (2) 0.1104 (3) 0.0434 (3) 0.0937 (2)	0.2348 (14) 0.4842 (10) 0.6941 (8) 0.9667 (8) 1.0235 (8) 0.7907 (8) 0.5997 (6) 1.0863 (7) 1.2380 (10) 1.2851 (7) 1.3075 (11) 0.8047 (10) 0.8976 (7)	0.5360 (3) 0.5498 (2) 0.7482 (2) 0.7424 (2) 0.7220 (2) 0.71856 (14) 0.80889 (12) 0.8201 (2) 0.78081 (13) 0.8878 (2) 0.6568 (2) 0.61145 (12)	0.064 (3) 0.064 (3) 0.067 (2) 0.067 (2) 0.062 (2) 0.062 (2) 0.0660 (12) 0.0795 (13) 0.0791 (13) 0.089 (2) 0.077 (2) 0.0856 (14)

C51B

0.0639 (3)

Refinement

Refinement		O51B	-0.0101 (2)	1.1834	(8) 0.57	70 (2)	0.115(2)
	—	C52B	0.1239 (3)	1.1564	(11) 0.53	15 (2)	0.116 (3)
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0692$ $wR(F^2) = 0.1468$	Extinction correction: SHELXL93 (Sheldrick, 1993)	\dagger Occupancy = 0.5.					
S = 1.313	Extinction coefficient:	T	able 2. Selec	ted geom	etric parar	neters ()	Å. °)
2121 reflections	0.00018 (8)	N1A-C6	A	1.391 (5)	N1 <i>B</i> —C1' <i>B</i>		1.433 (5)
470 parameters	Atomic scattering factors	N1A—C2	A	1.405 (4)	C2BO2B		1.208 (4)
$w = 1/(\sigma^2 (F^2) + (0.0332P)^2)$	from International Tables	N1A-C1	'A	1.474 (4)	C2 <i>B</i> —N3 <i>B</i>		1.360 (5)
$= 1/[0 (1_0) + (0.05521)$	for Crustello granty (1002	C2A02	A	1.201 (5)	N3B—C4B		1.404 (4)
+ 3.4133F	Jor Crystanography (1992,	C2A—N3	A	1.351 (4)	C4 <i>B</i> —N4 <i>B</i>		1.288 (5)
where $P = (F_o^2 + 2F_c^2)/3$	Vol. C, Tables 4.2.6.8 and	N3A-C4	A	1.405 (5)	C4 <i>B</i> —C5 <i>B</i>		1.434 (6)
$(\Delta/\sigma)_{\rm max} = -0.198$	6.1.1.4)	C4A—N4	A	1.279 (5)	C5B—C6B		1.308 (6)
$\Lambda_{\alpha} = 0.242 \circ \lambda^{-3}$	Absolute configuration:	C4A—C5	4	1.432 (5)	C5B—C8B		1.508 (5)
$\Delta p_{\text{max}} = 0.242 \text{ C A}$	Absolute configuration.	C5A—C6,	4	1.329 (5)	N4B—O4B1		1.465 (5)
$\Delta \rho_{\rm min} = -0.2/1 {\rm e A}^{-3}$	assigned to agree with	C5A—C8,	4	1.505 (6)	N4B04B2		1.462 (5)
	the known chirality at C4'	N4A04	Α	1.475 (5)	O4B1—C7B	1	1.341 (8)
	arising from its synthetic	O4A—C7.	A	1.375 (6)	C7B1—C8B		1.425 (9)
	ansing from its synthetic	C7A—C8/	4	1.476 (4)	O4B2—C7B	2	1.344 (8)
	precursor	C1'A04	\$'A	1.452 (4)	C7B2—C8B		1.471 (9)
		C1'AC2	2'A	1.503 (6)	C1'B	3	1,469 (4)
Table 1. Fractional atomic coordinates and equivalent			3'A	1.509 (4)	C1'B-C2'B	1	1,496 (6)
isotropic displacement parameters (Å ²)			3'A	1.467 (4)	C2'B-C3'B	1	1.513 (5)
			YA :	1.500 (5)	C3'B	1	1.467 (4)
			'A	1.447 (5)	C3'B-C4'B		1 498 (6)
$U_{eq} = (1/3).$	$\Delta_i \Delta_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$	C4'A-C5	σ'A	1.496 (5)	C4'B = 04'B	1	1465 (5)
٣		03'A-C	31A	1.356 (4)	C4'B - C5'B		1 510 (5)
*	y 2 Ueg	0111 0				_	

			• • •		C+11 C511	1.400(5)	C4 D-04 D	1.405 (5)
	х	v	z	Uea	O3'A—C31A	1.356 (4)	C4'B-C5'B	1.510 (5)
N1A	0.3420 (2)	0.0501	0.20934 (12)	0.0478 (12)	C31A031A	1.165 (5)	O3'B—C31B	1.366 (5)
C2A	0.3935 (3)	0.2388 (8)	0.24522 (15)	0.055 (2)	C31A—C32A	1.491 (6)	C31BO31B	1.155 (4)
N3A	0.3764 (2)	0.2614 (7)	0.30448 (11)	0.0476 (12)	C5'A05'A	1.438 (4)	C31 <i>B</i> —C32 <i>B</i>	1.474 (5)
C4A	0.3124 (3)	0.1260 (8)	0.33145 (14)	0.050 (2)	05'A—C51A	1.325 (5)	C5'BO5'B	1.427 (5)
C5A	0.2667 (2)	-0.0732(8)	0.29375 (14)	0.0428 (15)	C51A051A	1.217 (5)	O5' <i>B</i> —C51 <i>B</i>	1.322 (6)
C6A	0.2814 (2)	-0.0977 (9)	0.2350 (2)	0.047(2)	C51A-C52A	1.439 (6)	C51BO51B	1.219 (6)
O2A	0.4477 (2)	0.3609 (6)	0.22321 (10)	0.0533 (11)	N1 <i>B</i> —C6 <i>B</i>	1.400 (4)	C51 <i>B</i> —C52 <i>B</i>	1.438 (6)
N4A	0.3090 (2)	0.2008 (8)	0.38743 (14)	0.078 (2)	N1 <i>B</i> —C2 <i>B</i>	1.396 (5)		
O4A	0.2416 (2)	0.0558 (7)	0.41490 (12)	0.0845 (13)	C6A—N1A—C2A	121.2 (3)	C2B-N1B-C1'B	119.6 (3)
C7A	0.2337 (3)	-0.1846 (9)	0.3941 (2)	0.071 (2)	C6A—N1A—C1'A	119.7 (2)	O2B—C2B—N3B	123.3 (4)
C8A	0.1998 (3)	-0.2149 (10)	0.32499 (15)	0.062 (2)	C2A—N1A—C1'A	119.0 (3)	O2B—C2B—N1B	121.0 (4)
C1'A	0.3481 (2)	0.0204 (8)	0.1421 (2)	0.045 (2)	O2A-C2A-N3A	125.7 (4)	N3B—C2B—N1B	115.1 (3)
C2'A	0.3683 (3)	-0.2368 (8)	0.12240 (14)	0.050(2)	02A-C2A-N1A	120.6 (3)	C2B-N3B-C4B	125.1 (3)
C3'A	0.3179 (2)	-0.2555 (8)	0.05396 (13)	0.046 (2)	N3A-C2A-N1A	113.7 (3)	N4B—C4B—N3B	113.1 (3)
C4'A	0.2360 (2)	-0.0870 (9)	0.0509 (2)	0.054 (2)	C2AN3AC4A	127.4 (3)	N4BC4BC5B	130.4 (3)
04'A	0.2572 (2)	0.0808 (6)	0.10421 (11)	0.0517 (10)	N4A-C4A-N3A	112.3 (4)	N3B—C4B—C5B	116.5 (4)
O3'A	0.3808 (2)	-0.1542 (7)	0.01520(10)	0.0600 (11)	N4A—C4A—C5A	131.8 (4)	C6B-C5B-C4B	119.0 (3)
C31A	0.3604 (3)	-0.2132 (11)	-0.0474 (2)	0.073 (2)	N3A—C4A—C5A	115.9 (3)	C6B-C5B-C8B	126.4 (4)

0.077 (2)

0.5740 (2)

1.0868 (10)

C6A—C5A—C4A	117.7 (4)	C4B—C5B—C8B	114.6 (4)
C6A—C5A—C8A	128.1 (4)	C5B—C6B—N1B	123.0 (4)
C4AC5AC8A	113.9 (3)	C4BN4BO4B1	112.1 (4)
C5A-C6A-N1A	123.9 (4)	C4B—N4B—O4B2	114.2 (4)
C4A—N4A—O4A	111.3 (3)	C7B1—O4B1—N4B	122.1 (5)
C7A—O4A—N4A	113.2 (3)	O4B1C7B1C8B	122.7 (6)
O4A-C7A-C8A	114.9 (4)	C7B2—O4B2—N4B	112.3 (5)
C7A—C8A—C5A	105.9 (3)	O4B2C7B2C8B	123.8 (6)
C6BN1BC2B	120.8 (3)	C7B1C8BC5B	114.6 (4)
C6B—N1B—C1'B	119.5 (3)	C7B2C8BC5B	101.7 (5)

The low number of observed reflections, as a result of poor crystal quality, made it necessary to apply similarity restraints for the 1,2 and 1,3 distances in the two molecules, and similar U_{ij} restraints for atoms closer than 1.7 Å. During refinement, the behaviour of the oxazino ring in residue *B* indicated local disorder. Two alternative conformations (with site-occupancy factors 0.5) for atoms O4 and C7 (O4B1 and O4B2, and C7B1 and C7B2) were used to describe this disorder.

The H atoms were placed at calculated positions (C—H = 0.98 Å for tertiary C—H, C—H = 0.97 Å for secondary CH₂, C—H = 0.93 Å for C_{sp^2} —H, C—H = 0.96 Å for an idealized methyl group and N—H = 0.90 Å, $U = 1.2U_{eq}$ of the parent atom) and refined in the riding mode or rotating mode (methyl groups).

Absorption coefficients were taken from International Tables for Crystallography (1992, Vol. C, Table 4.2.4.2).

Data collection: XSCANS (Fait, 1991). Cell refinement: XS-CANS. Data reduction: Siemens REDUCE. Program(s) used to solve structure: DIRDIF (Beurskens et al., 1992). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-PC (Sheldrick, 1990). Software used to prepare material for publication: SHELXL93.

This work was supported by the Medical Research Council (UK) and the Research Council of the KU Leuven (Belgium). LVM is a Senior Research Associate of the National Fund for Scientific Research (Belgium).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1102). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Dickerson, R. E., Bansal, M., Calladine, C. R., Diekmann, S., Hunter, W. N. Kannerd, O. vog Kitzing, F. Laver, B. Nelsen, H. C. M.
- W. N., Kennard, O., von Kitzing, E., Lavery, R., Nelson, H. C. M., Olson, W. K., Saenger, W., Shakked, Z., Sklenar, H., Soumpasis, D. M., Tung, C.-S., Wang, A. H.-J. & Zurkin, V. B. (1989). *EMBO J.* 8, 1–4.
- Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-568.
- Nedderman, A. N. R., Stone, M. J., Williams, D. H., Kong Thoo Lin, P. & Brown, D. M. (1993). J. Mol. Biol. 230, 1068–1076.
- Saenger, W. (1984). In Principles of Nucleic Acid Structure. New York: Springer.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Sheldrick, G. M. (1990). SHELXTL-PC Manual. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Strucures. Univ. of Göttingen, Germany.
- Van Meervelt, L. (1991). Acta Cryst. C47, 2635-2637.
- Van Meervelt, L., Moore, M. H., Kong Thoo Lin, P., Brown, D. M. & Kennard, O. (1990). J. Mol. Biol. 216, 773-781.

Acta Cryst. (1995). C51, 1350–1352

(\pm) -threo-3-Hydroxy-2,3-diphenylpropanoic Acid Methyl Ester

TSONKO KOLEV, HANS PREUT AND PAUL BLECKMANN

Fachbereich Chemie, Universität Dortmund, D-44227 Dortmund, Germany

IVAN JUCHNOVSKI

Institute for Organic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria

(Received 11 October 1994; accepted 7 December 1994)

Abstract

The crystal structure of methyl (\pm) -threo-3-hydroxy-2,3-diphenylpropanoate, $C_{16}H_{16}O_3$, has been determined. In the crystal, the phenyl group at the chiral α -C atom and the hydroxy group at the chiral β -C atom are in the energetically preferred trans conformation. The torsion angle O—C $_{\beta}$ —C $_{\alpha}$ —C_{phenyl} is 175.8 (2)°. The H atoms at the chiral C atoms are also in an antiperiplanar arrangement. Pairs of molecules are linked via a pair of weak intermolecular hydrogen bonds between hydroxyl H and carbonyl O atoms. The IR spectrum verifies the presence of this hydrogen bond. The dihedral angle between the least-squares planes through the phenyl rings is 53.0 (1)°. The distance between the α and β chiral C atoms is 1.530 (3) Å. The bond distances and angles of the molecule are as expected.

Comment

We are interested in the effects which different substituents have on the stereochemistry of substituted diphenylethanes possessing two chiral C atoms. This work is part of a project involving the structural investigation of substituted chiral and diastereoisomeric diphenylethanes. This structural information is significant because the diphenylethane skeleton is present in some natural products and affects fundamental stereochemical reactions (Hayashi, Matsumoto, Kiyoi, Ito, Kohira, Tominaga & Hosomi, 1988; Gong & Streitwieser,